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Abstract
The demand for assorted conditional edits on a single real image is becoming increasingly prevalent.We focus on two dominant
editing tasks that respectively condition on image and text input, namely subject-driven editing and semantic editing. Previous
studies typically tackle these two editing tasks separately, thereby demanding multiple editing processes to achieve versatile
edits on a single image. However, fragmented and sequential editing processes not only requiremore user effort but also further
degrade the editing quality. In this paper, we propose UniCanvas, an affordance-aware unified framework that can achieve
high-quality parallel subject-driven and semantic editing on a single real image within one inference process. UniCanvas
innovatively unifies the multimodal inputs of the editing task into the textual condition space using tailored customization
strategies. Building upon the unified representations, we propose a novel inference pipeline that performs parallel editing
by selectively blending and manipulating two collaborative text-to-image generative branches. Customization enables the
editing process to harness the strong visual understanding and reasoning capability of pre-trained generative models for
affordance perception, and a unified inference space further facilitates more effective affordance interaction and alignment
for compelling editing. Extensive experiments on diverse real images demonstrate that UniCanvas exhibits powerful scene
affordance perception in unified image editing, achieving seamless subject-driven editing and precise semantic editing for
various target subjects and query prompts (https://jinjianrick.github.io/unicanvas/).

Keywords Real image editing · Pre-trained model customization · Text-to-image generation · Diffusion model · Affordance
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1 Introduction

Do you envision featuring your cherished plushie in the land-
scapes you have explored and documented, as if it were there
with you? Would you like your recently adopted pet dog to
join in the previously captured family photos? Moreover,
how about transforming these processed photos into artistic
oil paintings and adorning your pet dog in stylish attire?

Performing multiple creative edits on a single real image
is increasingly in demand. Our work is dedicated to two pri-
mary editing tasks, namely subject-driven editing Yang et al.
(2023); Song et al. (2023); Chen et al. (2024b); Lu et al.
(2023a) and semantic editingCouairon et al. (2023);Mokady
et al. (2023); Kawar et al. (2023); Zhang et al. (2023b), which
perform image manipulations conditioned on image and text
guidance. Subject-driven editing aims to generate a specific
subject in a specified regionof an input image,while semantic
editing is tasked with modifying the image according to tex-
tual descriptions. Previous studies typically focus on a single
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Fig. 1 Limitations of existing methods. We provide visual examples of
the latest subject-driven editing method, Anydoor Chen et al. (2024b),
and the semantic editing method, LEDITS++ Brack et al. (2024).
Existing methods exhibit poor affordance perception and deliver unsat-
isfactory results. For subject-driven editing in a, the blended subject
appears incongruous with the background, as if it were directly pasted
onto the image. The semantic editing in b struggles to locate the editing
regions and perform the correct edits. Existing methods must perform
sequential edits to achieve unified editing. As shown in c, sequential
editing causes critical issues, such as error accumulation and deteriora-
tion of prior results due to later edits (i.e., ‘mug’ in the 1st row and ‘tank
toy’ in the 2nd row). Please refer to Figs. 9 and 10 for more examples
of the limitations of existing methods

type of editing task. Therefore, to achieve subject-driven and
semantic editing on a single image, we need to perform a
sequential editing process using multiple editing methods.
However, a fragmented editing process involving various
methods requires more user effort in preparation (e.g., envi-
ronment configuration, pre-trained model preparation, etc.)
and execution. Worse yet, sequential editing can lead to the
accumulation of reconstruction and editing errors. Besides,
the later editing process can further deteriorate the previous
results, further degrading the editing quality, as shown in
Fig. 1c.

Additionally, even for single-type image editing, existing
methods deliver unsatisfactory results. To achieve com-
pelling subject-driven editing and semantic editing, in addi-

tion to maintaining fidelity of the source image and the given
subject, several key issues need to be addressed. Firstly, the
edited content should exhibit appropriate visual properties
(e.g., geometric attributes, visual domain, lighting condi-
tions, and visual depth), thereby achieving semantic and
geometric compatibility with the background scene. Besides,
the model should synthesize natural edited-unedited interac-
tions that comply with physical laws. For instance, reflection
takes place for reflective surfaces, and shadow parameters
should be consistent with background objects. Additionally,
the model should perceive the semantic context in the source
image to precisely locate the editing region in semantic edit-
ing. All of these issues entail the model possessing effective
affordance perceptionKulal et al. (2023); Gupta et al. (2011);
Wang et al. (2017), which enables a semantic understanding
of the image and subject to achieve reasonable and realis-
tic editing. Previous methods Cong e al. (2020); Xue et al.
(2022);Azadi et al. (2020); Lin et al. (2018); Liu et al. (2020);
Yang et al. (2023); Kulal et al. (2023); Lu et al. (2023a); Chen
et al. (2024b); Song et al. (2023) generally exhibit unsatis-
factory affordance perception on subject-driven editing and
semantic editing, thereby hindering high-quality editing. For
instance, as shown inFig. 1, the blendedobject appears incon-
gruouswith the background context in subject-driven editing,
while semantic editing methods struggle to accurately locate
multiple editing regions.

Ourwork strives to performparallel subject-driven editing
and semantic editing on a single real image with effective
affordance perception (Fig. 2). Formally, given an arbitrary
real image, our aim is to seamlessly render a specific subject
into a designated region of the image, while also enabling
precise and effortless semantic edits on both the source image
and the blended subject.

Recently, significant advancements have been achieved in
the field of customized text-to-image generation Ruiz et al.
(2023); Gal et al. (2023a); Kumari et al. (2023). Given a few
images of a custom concept as reference, model customiza-
tion fine-tunes large-scale pre-trained models to implant the
visual concept, binding the visual concept to specific textual
prompt. We seek to achieve affordance-aware unified edit-
ing based on text-to-image model customization, inspired by
its two key merits. First, a unified image editing task takes
two modalities as input, i.e., textual prompts and images.
Text-to-image model customization can convert images into
textual conditions, unifying two types of input to the same
modality, thereby paving the way for unified editing. Fur-
thermore, large-scale pre-trained models exhibit powerful
generative priors for visual understanding and reasoning.
Model customization implants the visual concept into pre-
trained models, providing a potential solution to unlock the
models’ capacity for scene affordance perception in image
editing.
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Fig. 2 Given a source real image and a target subject specified by several reference images, UniCanvas can seamlessly render the target subject
into a designated region of the source image, while simultaneously being able to perform semantic edits on the resultant image in a precise and
effortless manner

In this paper, we propose UniCanvas, a compact frame-
work built upon customized text-to-image generation for
unified image editing. UniCanvas consists of two editing-
specific customization strategies and a novel inference
pipeline. Concretely, UniCanvas firstly fine-tunes the pre-
trained text-to-image model to bind the target subject and
source image with special textual prompt. The vanilla fine-
tuning strategy is proposed for text-to-image generation and
is unsuitable for image editing. Therefore, we tailor distinct
fine-tuning strategies for these two components, endowing
them with ideal inference-time properties. Building upon
the unified representations, the proposed inference pipeline
achieves parallel editingwith two collaborative text-to-image
generative branches, namely the subject branch and the image
branch. Conditioned on the bound textual prompts, the sub-
ject branch is tasked with generating the target subject in the
specified region with high visual fidelity, while the image
branch is responsible for faithfully reconstructing the source
image. To achieve subject-driven editing, these two genera-
tive branches are concurrently forwardedwithin the diffusion
model and integrated during the latent denoising steps
using a Selective Blending Module (SBM). SBM employs
cross-attention maps to dynamically determine aggregation
weights of two branches, facilitating coherent and seamless
image blending. Meanwhile, by simply modifying the con-
ditional prompts, we can perform semantic editing on both
the blended subject and the source image.

UniCanvas innovatively unifies the multimodal inputs
of the editing task into the textual condition space using
tailored customization strategies. Customization enable the

inference process to harness the strong visual understanding
and reasoning capability of large-scale generative models
for affordance perception. The subject and source image
are generated by dual collaborative branches that interact
mutually, facilitating more effective affordance interaction
and alignment between the two components for seam-
less blending. Leveraging the powerful generative priors
of pre-trained large-scale models, UniCanvas substantially
enhances rationality and compatibility between the blended
subject and source image in terms of geometry and seman-
tics. Furthermore, the text-to-image generation paradigm of
UniCanvas provides a unified interface for subject-driven
editing and semantic editing, enabling more precise and
convenient image manipulation simply through appropriate
textual guidance.

We conduct extensive experiments on various target sub-
ject and real image pairs with different target regions.
Experimental results demonstrate that UniCanvas exhibits
strong capability in scene affordance perception, enabling
it to generate realistic and reasonable subject and interac-
tions in compatibility with the background scene. Therefore,
UniCanvas achieves seamless subject-driven editing and
precise semantic editing, even in challenging scenes such
as cross-domain blending. More applications like subject
replacement and spatial controllable customized text-to-
image generation can also be achieved under the framework
of UniCanvas. Overall, the contributions of this work are
summarized as follows:
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1. We introduce UniCanvas, a unified framework capable
of performing parallel subject-driven and semantic edit-
ing on a real image in a single inference process. To the
best of our knowledge, this is the first work to achieve
parallel image editing conditioned on both image and text
guidance.

2. UniCanvas innovatively unifies the multimodal inputs
of the editing task into the textual condition space
using tailored customization strategies. Building upon
the unified representations, we propose a novel infer-
ence pipeline that performs parallel editing by selectively
blending and manipulating two collaborative text-to-
image generative branches.

3. Extensive experiments demonstrate that UniCanvas
achieves high-quality unified editing for real images.
Notably,UniCanvas excels in scene affordance percep-
tion, a capability in which previousmethods fall short but
is critical for reasonable and coherent editing.

2 RelatedWorks

2.1 Text-to-Image Generation

Text-to-image (T2I) generation aims to generate visually
convincing images based on textual descriptions. Follow-
ing the seminal work Mansimov et al. (2015), numerous
text-to-image methods have been subsequently proposed.
Early approaches Reed et al. (2016); Zhang et al. (2017);
Xu et al. (2018); Li et al. (2019) utilized generative adver-
sarial networks (GANs)Goodfellow et al. (2014) to con-
vert natural language into images, primarily focusing on
small-scale input scenarios. Autoregressive models such as
DALL-E Ramesh et al. (2021), Cogview Ding et al. (2021),
NUWA Wu et al. (2022), and Parti Yu et al. (2022), reframe
text-to-image generation as a sequence-to-sequence prob-
lem. These methods exploit auto-regressive transformers as
generators and output sequences of image tokens. While
autoregressive methods bolster performance with large-scale
textual inputs, they are confronted with challenges such as
computational overhead and the accumulation of sequential
errors Zhang et al. (2023). Recent advancements in text-
to-image generation utilize diffusion models (DMs) Sohl-
Dickstein et al. (2015) as the generative backbone. These
models generate images through a denoising task while
incorporating text conditions during the denoising process.
Models likeGLIDENichol et al. (2022) and ImagenSaharia e
al. (2022) generate images at a high-dimensional pixel level.
Another line of research, including Stable Diffusion Rom-
bach et al. (2022) and DALL-E 2 Ramesh et al. (2022), trains
the diffusion model within a low-dimensional latent space.

2.2 Subject-Driven Image Editing

There are several research lines of subject-drivenor reference-
based image editing, including image composition and
inpainting-based methods, which aim to generate a specific
subject in a specified region of the source image. The image
composition methods Cong e al. (2020); Xue et al. (2022);
Azadi et al. (2020); Lin et al. (2018); Liu et al. (2020); Lu
et al. (2023b) cut the foreground from one reference image
and paste it on the background image to produce a com-
posite image Niu et al. (2021). These methods often focus
on a specific aspect of the composition problem, such as
image matting Xu et al. (2017), image harmonization Cong
e al. (2020); Xue et al. (2022), geometric correction Azadi
et al. (2020); Lin et al. (2018), and shadow generation Liu
et al. (2020), to make the composite image more realis-
tic. However, these methods yield composite images that
lack affordance perception and subject diversity, resulting in
unsatisfactory performance in terms of geometric and seman-
tic compatibility. There have been recent works Yang et al.
(2023); Kulal et al. (2023); Lu et al. (2023a); Chen et al.
(2024b); Song et al. (2023) that generate a specific subject in
the target region of the background using image inpainting.
However, inpainting-basedmethods denoise the target region
and generate objects according to the given text prompt,
which discard the important structural and semantic infor-
mation Hertz et al. (2023); Couairon et al. (2023), thereby
hindering the affordance perception. This further results in
strong artifacts, such as generating partial subjects or incon-
sistent and distorted content within the target regionXie et al.
(2023).

2.3 Semantic Image Editing

Semantic image editing aims to modify an image based on
instructions given in natural language Couairon et al. (2023).
Some GAN-based methods optimize either the image or
its latent representation based on a high-level multimodal
objective to edit images Crowson et al. (2022); Couairon
et al. (2022); Patashnik et al. (2021), while others discover
latent space directions in a pre-trained GAN for semantic
edits Härkönen et al. (2020); Collins et al. (2020); Shen et al.
(2020). Diffusion model has recently demonstrated power-
ful capabilities in semantic image editing. Diffusion-based
semantic editing methods can be primarily classified into
three categories: training-free methods Choi et al. (2021);
Meng et al. (2021); Cao et al. (2023); Couairon et al.
(2023); Mokady et al. (2023); Tumanyan et al. (2023),
training Brooks et al. (2023); Zhang et al. (2023a), and
fine-tuning Kawar et al. (2023); Zhang et al. (2023b). Prox-
edit Han et al. (2024) proposes proximal guidance and
incorporates it to negative-prompt inversion with cross-
attention control. Prompt-to-Prompt Hertz et al. (2023)
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finds that cross-attention layers are crucial for linking the
image layout to prompt words, proposing to control the
edited image through attention map injection. Imagic Kawar
et al. (2023) finds a prompt embedding that aligns with the
input image and performs editing by interpolating between
the image embedding and the target prompt embedding.
Nguyen Nguyen et al. (2024) takes image pairs as visual
prompting, which is inverted into editing instructions to per-
form the same edit on new images. These methods typically
address semantic editing of a single main object but struggle
to perform complex editing involving multiple inconspicu-
ous objects.

2.4 Customized Text-to-Image Generation

Customized generation aims to incorporate a novel concept,
as described by a few user-provided examples, into pre-
trained text-to-image models. This enables the adapted mod-
els to generate high-quality and diverse images of the new
concept, guided by textual prompts. Pioneering works Gal
et al. (2023a); Ruiz et al. (2023) incorporate the novel con-
cept by fine-tuning the pre-trainedmodel. Text InversionGal
et al. (2023a) inverts the new concept into the embedding of a
special prompt token for customization, and it only optimizes
the token embedding during fine-tuning. DreamBooth Ruiz
et al. (2023) binds the newconceptwith a rare-token identifier
by fine-tuning the entire diffusion model. It also regularizes
the adapting process with a class-specific prior preservation
loss to prevent over-fitting and language-drift. These seminal
studies have garnered widespread attention of customized
text-to-image generation. Recent efforts have focused on
improving customization quality Alaluf et al. (2023); Tewel
et al. (2023) and developing more efficient methods Kumari
et al. (2023); Gal et al. (2023b); Han et al. (2023) for cus-
tomized generation. Another line of research Wei et al.
(2023); Xiao et al. (2023); Chen et al. (2024a) utilizes a
learning-based paradigm for customized generation, which
reduces inference-time costs but sacrifices generationquality.
More recently, multi-concept customized generation Kumari
et al. (2023); Liu et al. (2023); Han et al. (2023); Gu et al.
(2024) has been introduced, aiming to integrate multiple cus-
tomized concepts into a single output image. In this paper,
we achieve unified real image editing based on text-to-image
model customization.

3 Preliminaries and Task Descriptions

3.1 Preliminaries

3.1.1 Customized Text-to-Image Generation

Fig. 3 The conventional text-to-image model customization (fine-
tuning) process

A custom concept C f is incorporated into a pre-trained
text-to-imagemodel byfine-tuning themodel using N image-
prompt pairs D = {

(X i , PX i )
}N
i=1, where X i and PX i are

reference images and the corresponding textual prompts of
C f . Thefine-tuningprocess is illustrated inFig. 3a.Weutilize
Latent Diffusion Models (LDMs) Rombach et al. (2022) as
the generative backbone. Prompt PX i is firstly projected to
an intermediate representation c = τθ (PX i ) ∈ R

M×dc by
a text encoder τθ . c is then injected into the LDMs via the
cross-attention mechanism Vaswani et al. (2017), serving as
the condition for the reconstruction of X i . The reconstruction
process is regularized by the following squared error loss:

Ez,ε∼N (0,1),c,t

[
wt‖ε − εθ (zt , c, t)‖22

]
, (1)

where zt := αtz+σtε is the noised latent code at timestep t , z
is the clean latent code of the training data, and wt , αt , σt are
terms that determine the loss weight and noise schedule; εθ

is a denoising autoencoder implemented using a conditional
U-Net Ronneberger et al. (2015).

At inference, given the query text PC f containing the
learned concept C f , the customized LDMs can generate the
corresponding images conditioned on c = τθ (PC f ). Con-
cretely, an initial noise map zT ∼ N (0, 1) is iteratively
denoised from timestep t = T to t = 1 in the latent space
with each individual step corresponding to:

zt−1 = zt − γ εθ

(
zt , τθ (PC f )), t

)
, t = T , . . . , 1, (2)

where γ is the step size. Then z0 is decoded to image
space using an decoder fD to generate the target image
X̂ = fD(z0).

3.1.2 Cross Attention Layers in LDMs

The cross-attention layer utilizes latent image features I
and text embeddings T to compute queries Q = �Q(I),
keys K = �K (T ), and values V = �V (T ), using three
projection layers: �Q , �K and �V . Then the attention maps
M ∈ R

C×H×W are calculated as:
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M = softmax
(
QKT

√
d

)
∈ R

C×H×W , (3)

where d is the dimension of the queries and keys, and C ,
H , W are the channel dimension, height, and weight of M,
respectively. The final output of the cross-attention layer is
computed as I = MV . Each token in the conditional prompt
is associated with an attention map M, which determines
the spatial layout and geometry of the corresponding textual
semantics in the generated image Hertz et al. (2023).

3.2 Task Descriptions and Notations

Given an arbitrary real image Xs , we endeavor to perform
subject-driven editing and semantic editing of Xs within a
unified framework. The subject C f for subject-driven edit-

ing is specified by several reference images
{
(X i , PX i )

}N
i=1

(N is typically 3 ∼ 5). At inference, given a user mask MU

specifying the target regionR f , subject-driven editing aims
to seamlessly render the subject C f into R f of Xs , gener-
ating a composite image Xc. In Xc, we necessitate faithful
reconstruction for Xs while preserving key identifying fea-
tures of C f . Besides, it is crucial to ensure geometric and
semantic compatibility between the generated subject and
the background context. Additionally, we strive to further
perform semantic editing on Xc in a precise and effortless
manner, preserving the maximal amount of details from the
original image after convincing editing. For clarity, we pro-
vide a concise overview of the notations used in this work in
Table 1.

4 Method

We propose UniCanvas, which simultaneously achieves
subject-driven editing and semantic editing on real images
through text-to-image model customization.

UniCanvas unifies the modeling processes of the source
image and target subject within the framework of model
customization. These two components are implanting into a
pre-trained text-to-image model using corresponding image-
prompt pairs, binding them with unique textual descriptions.
As stated in Sect. 3.2, the ideal inference-time properties
differ for these two components. The target subject C f is
expected to exhibit the capability to be rendered in the speci-
fied region with high concept fidelity, while the source image
needs to be faithfully reconstructed. Therefore, we separately
tailor the fine-tuning strategies for source image (Sect. 4.1)
and target subject (Sect. 4.2) to achieve their desired proper-
ties. Notably, these two fine-tuning schemes are mutually
compatible to implant two components into a pre-trained
model simultaneously.

At inference, leveraging the bound textual descriptions
and target region as conditions, UniCanvas performs
the subject-driven editing (Sect. 4.3) and semantic editing
(Sect. 4.4) through customized text-to-image generation.

4.1 Source Image Customization

We fine-tune the pre-trained text-to-image model with the
single image-prompt pair to implant the source image
Xs Zhang et al. (2023b); Han et al. (2023). For a source
image Xs containing K primary visual concepts, the prompt
for Xs is constructed as follows:

PXs = [T1] [E1] [T2] [E2] · · · [TK ] [EK ] , (4)

where [Tn] ∈ R
d (n = 1, . . . , K represents the indices of the

visual concepts in Xs .) are learnable concept-specific con-
text, [En] ∈ R

t×d (n = 1, . . . , K , t is the token length of
[En]) are class descriptors of the K primary objects in Xs ,
and d is dimension of token embedding. For instance, the
prompt of the source image illustrated in Fig. 4b is designed
as ”V ∗

s1 bed V ∗
s2 table V ∗

s3 vase”, where V
∗
si (i = 1, 2, 3)

represent concept-specific context. To ensure faithful recon-
struction during inference, no extra data augmentation or
regularization is employed in fine-tuning. During inference,
we use the entire prompt PXs as the textual condition for the
reconstruction of Xs .

4.2 Target Subject Customization

To enable the generation of a customized subject in a speci-
fied regionR f with high fidelity, we propose Region-Aware
Customization (RAC) strategy for subject fine-tuning. RAC
modifies the original text-to-image reconstruction task by
incorporating generation region R f of subject as an addi-
tional condition, alongside Region Variability Augmentation
(RVA) for data construction and a dedicated novel prompt
scheme.

4.2.1 Region Variability Augmentation

RAC receives the subject generation region as an additional
condition, thus we need to provide the generation region of
each reference image for fine-tuning. The original generation
region is delineated by the bounding box of the subject in the
images. However, due to the limited quantity of reference
images, the implanted subject tends to favor restricted sizes
of target region at inference, posing problems such as signif-
icant subject distortion or subject omission for small target
regions. Therefore, we propose a data augmentation strategy
called Region Variability Augmentation (RVA) to enhance
the generalization and robustness of the implanted subject
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Table 1 A concise overview of the notations

Notations Descriptions

Xs Source image for editing

C f Target subject for subject-driven editing

R f Target region for subject-driven editing

Xc The edited image

M Attention map in cross-attention layers

T The number of denoising steps

Fine-tuning stage
{
(X i , PX i )

}N
i=1 Reference image set of C f , where X i is the i-th reference image and PX i is the fine-tuning prompt of X i

PXs Fine-tuning prompt for Xs

T Concept-specific context in the prompt

E Class descriptors in the prompt

I Image-specific context in the prompt

Xa
i Augmented image of X i

LXa
i

Layout of image Xa
i

Inference stage

PC f Query prompt for inference

MU Binary user mask indicating R f

B Inference-time generative branch

T Prompt token set

MB Dynamic aggregation mask of B
S Softmax operation

F̂ Output features of cross-attention layers

in different region conditions. Specifically, we crop the sub-
ject from the original reference image X i along its bounding
box. The cropped subject is then randomly scaled down to
0.4 − 1.0× and padded with zero pixels to restore it to the
original size, resulting in an augmented image Xa

i . X
a
i con-

sists of the foreground regionR f and the background region
Rb (i.e., the augmented region), as illustrated in Fig. 4. The
position ofR f within the augmented image is also random-
ized. We define the layout of Xa

i as:

L p
Xa
i

=
{
1, p ∈ R f

0, p ∈ Rb
, (5)

where L p
Xa
i
represents the value of layout LXa

i
at pixel p.

4.2.2 Prompt Scheme Design

Previous works Ruiz et al. (2023); Kumari et al. (2023);
Gal et al. (2023a) construct fine-tuning prompts from manu-
ally crafted prompt templates (e.g., ”A photo of {}”) for
reference images. The manually designed part in prompts
is frozen during fine-tuning, which may provide imprecise
guidance for model adaptation, especially with region vari-
ability augmentation. Therefore, we replace the manually

crafted prompt templates with learnable, image-specific con-
texts for each reference image. Concretely, the conditional
prompts forwarded to the text transformer are structured as
follows:

PX i = [I]i1 · · · [I]iM [T]1 · · · [T]S [E] [I]iM+1 · · · [I]iM+L , (6)

where the prompt PX i for the image X i is composed of
three components: image-specific context vectors [I]im (m =
1, . . . , M+ L) ∈ R

d with context length of M+ L , concept-
specific context vectors [T]s (s = 1, . . . , S) ∈ R

d with
context length of S, and the concept descriptor [E] ∈ R

t×d .
Image-specific Context [I] are continuous context vectors,
which are specific to each image and independent across
images. These vectors can be optimized end-to-end, adap-
tively modeling the concept-irrelevant content in each refer-
ence image for more precise guidance of model fine-tuning.
Concept-specific Context [T] models the concept-relevant
content, which is learnable and shared across all reference
images. We denote this as ”V ∗

f ”. Concept Descriptor [E]
is the word embedding of a coarse class noun (denoted as
”<noun>”) of the concept Ruiz et al. (2023), e.g., embed-
ding of noun ”teddybear”.We further define the indicator
vector:
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Fig. 4 Overall pipeline of the fine-tuning process. We illustrate this
process with a simple example. (a) Target subject customization. We
introduce Region-Aware Customization (RAC) strategy to target sub-
ject fine-tuning. RAC incorporates the generation region R f of the

subject as an additional condition, alongside Region Variability Aug-
mentation (RVA) for data construction and a dedicated novel prompt
scheme. (b) Source image customization. The model is fine-tuned with
a single image-prompt pair

δkPXi
=

{
1, k ∈ [T] , [E]
0, k ∈ [I]

, (7)

where δkPXi
indicates that token k corresponds to foreground

(i.e., 1) or background (i.e., 0) of the reference image. The
learned concept-specific context, in combination with the
concept descriptor, is utilized to generate the subject at infer-
ence.

4.2.3 Region-Aware Customization

Conditioning on prompt PX i and layout LXa
i
, we aim to

reconstruct Xa
i . As detailed in Sect. 3.1.2, the attention maps

determine the spatial layout of images, allowing for modi-

fication to control the shape and location of the generated
objects Hertz et al. (2023); Xue et al. (2023); Kim et al.
(2023). Therefore, to constrain the spatial distribution of the
reconstructed subject, we rectify the corresponding attention
maps as follows:

{
Mk,p+ = α(max (Mk,p) − Mk,p), δkPXi

= L p
Xa
i

Mk,p− = α(Mk,p − min (Mk,p)), δkPXi
�= L p

Xa
i

, (8)

whereMk,p is attention score of token k at pixel p, max and
min operations return the maximum andminimum values for
each query, andα is a parameter related to region area. There-
fore, for attention maps corresponding to concept-specific
tokens and class nouns, we increase the attention score in
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regionR f while decreasing it in regionRb. Conversely, for
attention maps corresponding to image-specific tokens, the
attention score in regionRb is increased, and in regionR f it
is decreased. Therefore, the objective for subject customiza-
tion is modified from Eq. (1) as:

Ez,ε∼N (0,1),c,t

[
wt‖ε − εθ (zt , PX i , LXa

i
, t)‖22

]
. (9)

This fine-tuning strategy enables the model to be better
jointly controlled by textual prompts alongwith explicit posi-
tional conditions, achieving the generation of subjects in
specified regions with high subject fidelity.

4.3 Subject-Driven Editing

The overview of the subject-driven editing process is illus-
trated in Fig. 5. UniCanvas achieves subject-driven editing
with two generative branches: the subject branch B f and
the image branch Bs . These two branches share same model
parameters and collaborate to generate target images at infer-
ence. Concretely, the subject branch is conditioned on the
target region R f specified by the user mask MU and a tex-
tual prompt PC f , tasked with rendering the target subjectC f

described by PC f in the region R f . On the other hand, the
image branch, conditioned on the prompt PXs , is responsible
for faithfully reconstructing the source image Xs . These two
generative branches are simultaneously forwardedwithin the
diffusion model and selectively integrated during the latent
denoising steps using a Selective Blending Module (SBM)
to produce the final output.

4.3.1 Selective Blending Module

To achieve coherent and seamless blending, we introduce
a Selective Blending Module (SBM) to each cross-attention
layer within the U-Net, as depicted in Fig. 5.

The text-to-image generation paradigm enables the desig-
nation of specific semantic content by utilizing correspond-
ing textual tokens. Hence, we first construct the token sets
for the two branches, each containing the tokens of content
that the respective branch is responsible for generating. The
token set for B f is T (PC f ) = {”V ∗

f ”,”<noun>”}, and the
token set for Bs consists of all tokens in PXs , denoted as
T (PXs ).

Before the dual-branch blending, in consistent with the
fine-tuning stage, we need to constrain the spatial distribution
of the target subject to the target region by rectifying the
attention maps using Eq. (8). The indicator vector and layout
are obtained according to T (PC f ) andMU .We only perform
this rectification in the early stage of denoising (0.3 × T ).

Since the attention maps M determines the spatial lay-
out of the corresponding textual semantics in the generated

image, we take the attention maps corresponding to the
tokens in the token sets T (PC f ) and T (PXs ) to get the

dynamic blending mask Mt,i
B f

and Mt,i
Bs

for branches B f and
Bs :

Mt,i
B f

=
∑

k∈T (PC f )

Mt,i
k ,Mt,i

Bs
=

∑

k∈T (PXs )

Mt,i
k , (10)

where Mt,i
k is the attention map of token k.

Then, we apply the spatial softmax Ss to enhance the
sharpness of each mask’s spatial distribution, followed by
a pixel-wise softmax Sc across two branches to control the
overall blending intensity. The resulting blending mask M̂t,i

is as follows:

M̂t,i =
(
M̂t,i

B f
, M̂t,i

Bs

)
= Sc

(
Ss

(
Mt,i

B f

)
, λSs

(
Mt,i

Bs

))
, (11)

where λ controls the relative blending strength of the two
branches.

M̂t,i determines the spatially varying impacts of each
branch dynamically. Therefore, the selective blending of the
two branches is performed with weighting by M̂t,i :

F̂ t,i
I = F̂ t,i

B f
� M̂t,i

B f
+ F̂ t,i

Bs
� M̂t,i

Bs
, (12)

where F̂ t,i
B f

and F̂ t,i
Bs

are the unprocessed outputs from the
subject branch and the image branch at the i-th cross-
attention layer during denoising step t , and � represents
pixel-wise multiplication,. This selective integration facili-
tates coherent and seamless blending, as well as ensuring the
preservation of the background within the target region.

To further preserve the source image content outside of
R f , we calculate the output of SBM as follow:

F̂ t,i = F̂ t,i
I � MU + F̂ t,i

Bs
� (1 − MU ), (13)

where MU is the user mask specifying the target regionR f .
We use F̂ t,i to update the subject branch output F̂ t,i

B f
.

4.4 Semantic Editing

UniCanvas generates both the target subject and source
image conditioning on textual prompts, which are respec-
tively generated by two branches and then adaptively inte-
grated to obtain the final synthesis results. This framework
not only achieves superior image blending but also allows
for flexible semantic editing of the content in both branches
simply by modifying the corresponding textual prompt.
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Fig. 5 Overall framework of the inference process. We illustrate this
process with an example. UniCanvas achieves unified editing with
two collaborative text-to-image generative branches, namely the sub-
ject branch and the image branch. The subject branch is conditioned
on PC f and is tasked with generating the target subject in the spec-
ified region, while the image branch is conditioned on PXs and is
responsible for faithfully reconstructing the source image. These two

generative branches are integrated using a Selective Blending Module
(SBM) at each cross-attention layer to achieve subject-driven editing.
SBM employs cross-attention maps to dynamically determine aggre-
gation weights of two branches. Semantic editing can be performed on
both the blended subject and the source image bymaking corresponding
textual modifications to PC f and PXs

4.4.1 Semantic Editing of Blended Subject

To perform edits such as property modifications or acces-
sorization on the blended subject, we simply need tomake the
corresponding adjustments to PC f . For instance, let us con-
sider the example depicted inFig. 5. Ifwewant to decorate the
teddybearwith hat, we need to alter PC f = “V

∗
f teddybear

on the table” to P
′
C f

= “V ∗
f teddybear wearing

hat on the table”. Then, the token set of the sub-
ject branch needs to be updated from T (PC f ) = { V ∗

f ,

“teddybear” } to T (P
′
C f

) = {V ∗
f , “teddybear”,

”wearing”, “hat”}, thereby altering the dynamic aggre-
gation mask of the subject branch to encompass the edited
content in the generated image.

4.4.2 Semantic Editing of Background Scene

Regarding the background scene, semantic edits such as artis-
tic style variations or object replacement can be achieved
by simply making corresponding modifications to PXs . For
instance, to alter the color of the vase in the background scene
to red,wemodify the textual condition from PXs = ”V ∗

s1 bed

V ∗
s2 table V ∗

s3 vase” to P
′
Xs

= ”V ∗
s1 bed V ∗

s2 table red

vase”. Accordingly, we alter the token set of the image
branch fromT (PXs ) toT (P

′
Xs

), which contains all tokens in

P
′
Xs
. We denote the intersection of T (PXs ) and T (P

′
Xs

) as
TI (i.e., which contains the unchanged tokens {”V ∗

s1”, ”bed”,
”V ∗

s2”, ”table”, ”vase” }). The reconstructed background
image conditioned on the modified textual prompt P

′
Xs

may
suffer from significant undesired structural and content alter-
ations. SinceUniCanvas reconstructs the background scene
through a text-to-image generation process, textual editing
methods such as Prompt-to-Prompt Hertz et al. (2023) can
be utilized to facilitate the preservation of unedited content
by injecting the attention maps of the unedited prompt PXs .
Specifically, before editing, we perform the denoising dif-
fusion implicit model (DDIM) Song et al. (2021) sampling
conditioned on PXs to reconstruct the source image. DDIM
is one of the most widely used diffusion frameworks. The
DDIM sampling process, which generates images from ini-
tial noise, becomes deterministic by setting the noise variance
to 0. This ensures that the same output is produced when pro-
videdwith the same initial noise.We store the cross-attention
maps Mori of the tokens in TI at every DDIM sampling
step. At inference, we conduct DDIM sampling conditioned
on the edited text prompt P

′
Xs
. For the unchanged tokens
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p (i.e., tokens in TI ), we replace their associated attention
maps Mp,t with the corresponding attention maps in Mp,t

ori
at timestep t :

M̂p,t =
{
Mp,t

ori , if t > tτ and p ∈ TI
Mp,t , otherwise

, (14)

whereM̂p,t is themodified attentionmaps, and themodifica-
tion is applied only before timestep tτ . The original attention
maps contain spatial layout and geometry information of the
source image, which facilitates the preservation of the struc-
tural details.

5 Experiments

5.1 Experiment Setup

5.1.1 Dataset

We compile a new dataset comprising a total of 104 sam-
ples. Each sample in the dataset consists of a real image, a
target subject, a user mask, along with query prompts. The
real images are collected from websites that allow redistri-
bution, encompassing a wide variety of categories such as
indoor scenes and natural landscapes. The target subjects are
derived from existing customized generation works Gal et al.
(2023a); Ruiz et al. (2023); Kumari et al. (2023). These sub-
jects cover a diverse array of categories, spanning pets, toys,
plushies, etc., each of which is specified by several reference
images.

5.1.2 Evaluation Metrics

Subject-driven editing aims to render a given subject in
a specified region of the source image with high subject
fidelity. Besides, the generated subject should be reason-
able and compatible with the background scene. Therefore,
we use the following four metrics to evaluate the quality of
subject-driven editing across three aspects. 1) LPIPS Zhang
et al. (2018), which measures the LPIPS perceptual distance
between the input image and the generated image. 2) Quality
Score(QS) Gu et al. (2020), which evaluates the authenticity
and quality of the generated image. 3) Local CLIP Radford
et al. (2021) andDINOCaron et al. (2021) score.We crop the
images along the target region and calculate the local CLIP
and DINO similarity between the cropped image and refer-
ence images, denoted as SICLIP and SDINO, respectively. These
two metrics both gauge visual alignment, and higher values
indicate that the blended subject is more similar to refer-
ence images. Compared with CLIP, DINO can better capture
the unique features of each subject, thereby better reflect-
ing fine subject similarity rather than coarse class similarity.

Semantic editing aims to precisely modify an image based
on a query prompt while preserving the maximum amount of
details from the original image We evaluate the overall qual-
ity of semantic editing using the following two metrics: 1)
LPIPS, the LPIPS distance between the source image and the
edited image. 2) STCLIP, which evaluates the prompt fidelity
bymeasuring the average cosine similarity between theCLIP
embeddings of the query prompt and the edited image.

5.1.3 Implementation Details

We implement our method using PyTorch and conduct all
experiments on NVIDIA RTX 4090 GPUs with 24GB of
memory. We employ the released Stable Diffusion V1.4 Sta-
ble diffusion (2022) as initialization to provide a robust image
prior. Stable Diffusion is a powerful text-to-image LDM
that is pre-trained on 512 × 512 images from the LAION
dataset Schuhmann et al. (2021), and its latent code has a
spatial size of 64 × 64.

We fine-tune the pre-trained model with a batch size
of 6. During fine-tuning, we jointly optimize the learnable
token embedding along with a subset of parameters in cross-
attention layers Kumari et al. (2023). The base learning rate
of model parameters and concept embeddings is 10−5, which
is scaled by the batch size to yield a learning rate of 6×10−5.
For target subjects, all reference images are first resized to
512 × 512. We set the length of concept-specific tokens to
3. We set the length of the prefix prompt as M = 1 and the
length of the suffix prompt as L = 1, initializing them with
”A” and ”.”, respectively. The learning rate of the image-
specific contexts is set to 6 × 10−4, which is ten times the
base learning rate. As for source image, we set the learning
rate of the image-specific contexts to 6 × 10−4. The source
image and the reference images of the target subject are uti-
lized to jointly fine-tune the pre-trained model. At inference,
images are generated using 50 DDIM sampling steps with a
classifier-free guidance scale of 6 for all compared methods.
The generated results have an image resolution of 512×512
with a latent dimension of 64 × 64.

5.2 Qualitative Evaluation

To demonstrate the effectiveness of UniCanvas for unified
image editing,wepresent sample generations covering a vari-
ety of real images.

5.2.1 Subject-Driven Editing

In Fig. 6, we pair different source images and target subjects
for subject-driven editing, with the target region indicated by
the red bounding box. As observed, UniCanvas precisely
renders the target subject to the specified target region while
consistently preserving its key identifying visual features.
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Fig. 6 Subject-driven Editing. We pair different source images and
target subjects for subject-driven editing. Reference images of target
subjects are shown on the left, and source images are shown on the top.

The target region is indicated by the red bounding box. UniCanvas
can seamlessly render target subjects into the target region with high
subject fidelity

Most importantly, our method exhibits powerful capabilities
in affordance perception, achieving coherent and seamless
visual composition. Perceiving varying background contexts,
including factors such as viewpoints and illumination con-
ditions, the generated target object can adaptively adjust its
pose and lighting features to ensure geometric and seman-
tic harmony and compatibility with the background scene.
Furthermore, ourmethod demonstrates strong generalization
and robustness to various region conditions,maintaining high
visual fidelity of the target subject even when dealing with
challenging editing involving small target regions.

UniCanvas can also achieve cross-domain subject-driven
editing, seamlessly blending target subjects into specific con-
texts across diverse domains. We show sample generation
in Fig. 7. The reference images of the target subjects are
from the photorealism domain, while the source images are
from domains of oil painting, watercolor painting, and an
unknown artistic style. As observed,UniCanvas adaptively
adjusts and switches domains of the target subjects to align
with background domain while preserving their identities.
Additionally, UniCanvas embellishes blended objects with
supplementary background-related elements (e.g., the water

splashes at the intersection of dog’s paws and the stream’s
surface.), generating more harmonious images.

5.2.2 Semantic Editing

Bymodifying the conditioning prompt of the subject branch,
we can achieve the corresponding edits on the blended sub-
ject. We show examples in Fig. 8. Edits such as property
modification and accessorization are applied to the blended
subjects. As we can see, UniCanvas demonstrates editing
capabilities on various target subjects guided by different
textual prompts. The edited subjects faithfully adhere to the
editing instructions while effectively preserving their key
identifying features.

Meanwhile, UniCanvas enables flexible editing of the
background scene by modifying the conditioning prompt
PXs . Figure8 also presents sample generations of back-
ground editing. We conduct various edits such as object
modification and artistic style variations on the background
scene. As observed, UniCanvas showcases the convincing
ability to edit diverse background scenes with corresponding
textual guidance. Besides, the resultant imagesmaintain high
authenticity and structural integrity, preserving the original
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Fig. 7 Cross-domain Composition. Each row displays an example,
with the target regions indicated by red bounding boxes. The reference
images of the target subjects are all from the photorealism domain.
The source images are from domains of oil painting, watercolor paint-
ing, and an unknown artistic style, respectively.UniCanvas adaptively
adjusts and switches domains of the target subjects, achieving seamless
and harmonious blending (Color figure online)

geometric and semantic details of the source image in the
unedited portion. In PXs , the subjects in the source image
are represented as ”V ∗

s <noun>”. Modifying ”<noun>”
to ”<new-noun>” while preserving ”V ∗

s ” can blend prop-
erties of ”<noun>” into the generated ”<new-noun>”,
as illustrated in the second and third rows of “Edit I” in Fig. 8.

Semantic edits do not introduce any undesired artifacts
in subject-driven editing. The edited images still maintain
both semantic and geometric compatibility between blended
subjects and background scenes.

5.3 Comparisons

5.3.1 Baselines

For subject-driven editing, we select 6 related approaches
as baselines for comparison: 1) Custom Diffusion Kumari
et al. (2023), a multi-concept customized text-to-image gen-
eration method. 2) Paint-By-Example Yang et al. (2023). 3)
ObjectStitc Song et al. (2023). 4) SycoNet Niu et al. (2023),
the state-of-the-art image harmonization method. 5) Any-
door Chen et al. (2024b), the state-of-the-art reference-based
editing method, generates the given subject in the specified
region of the source image using inpainting. 6) Dream-
Com Lu et al. (2023a), a simple baseline that fine-tunes

the pretrained text-guided inpainting model for subject-
driven editing. As for semantic editing, UniCanvas aims
to perform intuitive semantic manipulation using only text,
so we compare our results to text-only semantic editing
methods: 1) DiffEdit Couairon et al. (2023). 2) Null text
inversionMokady et al. (2023). 3) ImagicKawar et al. (2023).
4) SINE Zhang et al. (2023b). 5) LEDITS++ Brack et al.
(2024). 6) InfEdit Xu et al. (2024).

For methods that only receive one image as reference, we
traverse all available references, sequentially utilizing each
image as conditions for generation. Subsequently, we select
the best result from these generated outputs for comparison.

5.3.2 Quantitative Comparisons

For each competing method, we randomly generate 6 results
for each editing case and report the average value for com-
parison.

Table 2 presents the quantitative comparison results of
subject-driven editing. The performance of Custom Diffu-
sion on region-based metrics, including local SICLIP and local
SDINO, is consistently low because it lacks the capability to
generate target objects in designated regions. Besides, Cus-
tom Diffusion exhibits a low LPIPS score as it is unable to
faithfully reconstruct the background scene when generating
multiple concepts together. Paint-by-Example and Object-
Stitc show low SDINO, indicating that they struggle to capture
fine-grained identifying features of the given subject. The
outputs of SycoNet obtain high SICLIP and SDINO since it
directly segments and copies the target subject from the ref-
erence imagebefore harmonization.The images generatedby
ObjectStitc and DreamCom appear implausible according to
the QS. Our approach achieves high-quality subject-driven
editing, generating the given subject in the specified region
with high visual fidelity.

We provide the quantitative results of semantic editing in
Table 3. While LEDITS++ achieves better similarity to the
source image, it exhibits a lowCLIP score. This suggests that
LEDITS++ performs less meaningful edits, aligning poorly
with the query prompt while leaving the source image largely
unchanged. In contrast, InfEdit achieves a high CLIP score,
but its high LPIPS score indicates significant and undesired
alterations to the source image. Our method demonstrates
significantly higher textual CLIP alignment, indicating more
meaningful editing that aligns better with the editing prompt.

5.3.3 Qualitative Comparisons

We present qualitative comparisons to further visually
demonstrate the effectiveness of UniCanvas over the base-
lines in subject-driven editing and semantic editing. For each
example, we randomly generate 6 results using each com-
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Fig. 8 Unified editing. Each row presents an example, with the target
regions indicated by red bounding boxes. PXs and PC f are the textual
guidance of image branch and subject branch, respectively.UniCanvas
provides a unified image manipulation interface for subject-driven edit-

ing and semantic editing. In addition to rendering target subjects into the
target region with high fidelity,UniCanvas can perform semantic edit-
ing on both the target subject and background scene simply by making
corresponding modifications to PX f and PCs (Color figure online)

peting method and select the best one from them for visual
comparison.

We show qualitative comparisons of subject-driven edit-
ing in Fig. 9. For images synthesized by Custom Diffusion,
the background scenes exhibit dramatic variations in the
overall structure and layout. The faithful reconstruction of
the background image requires overfitting, which leads to the
omission of the target subject. Additionally, Custom Diffu-
sion is unable to specify the spatial distribution of the blended
object. The results generated by SycoNet show inconsistency
between the composited subject and the background image.
The underlying cause is that SycoNet directly copies the
foreground subject from the reference image, which lacks
variability in poses and articulations. However, the appear-
ance of the subject in the reference image usuallymismatches
with various background contexts, resulting in implausi-
ble images. Paint-by-example, Anydoor, and DreamCom all
use inpainting to generate the subject in a specified region,

where Paint-by-example and Anydoor is training-free and
DreamCom is fine-tuned on the given target subject. Paint-
by-example falls short in preserving the key distinguishing
features of the target subject and sometimes generates unnat-
ural objects. These inpainting-based methods discard the
content information within the target region, leading to an
alteration of the background in some cases. Furthermore,
the generated object often appears incongruous with the
background context in terms of semantic and geometric con-
sistency, which shows subpar global and local affordance
perception. Our method demonstrates powerful affordance
perception, achieving reasonable and realistic editing in var-
ious scenes. For instance, the domain perception in row 1, the
geometric perception in row 2, and the reflection perception
in row 5, which are unattainable by other methods.

We present visual comparison results of UniCanvaswith
semantic editing baselines in Fig. 10. The source image for
semantic editing is generated by UniCanvas. All of these
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Table 2 Quantitative
comparisons

Algorithm LPIPS (↓) QS (↑ ) SICLIP (↑) SDINO (↑)
Custom Diffusion Kumari et al. (2023) 0.758 71.11 0.6815 0.3264

Paint-by-Example Yang et al. (2023) 0.2466 72.30 0.7662 0.5260

ObjectStitc Song et al. (2023) 0.2212 62.64 0.7649 0.5981

SycoNet Niu et al. (2023) 0.2448 78.81 0.8067 0.6337

DreamCom Lu et al. (2023a) 0.2028 71.05 0.7226 0.6124

Anydoor Chen et al. (2024b) 0.2734 74.38 0.7728 0.6062

UniCanvas (ours) 0.2492 82.47 0.8145 0.6538

Bold value represents the best results
The quantitative comparison results of our method and subject-driven editing baselines

Table 3 The quantitative
comparison results of our
method and semantic editing
baselines

Algorithm LPIPS (↓) STCLIP (↑)
DiffEdit Couairon et al. (2023) 0.274 0.3201

Null text inversion Mokady et al. (2023) 0.2874 0.3218

Imagic Kawar et al. (2023) 0.2497 0.3123

SINE Zhang et al. (2023b) 0.3067 0.3082

LEDITS++ Brack et al. (2024) 0.1543 0.3095

InfEdit Xu et al. (2024) 0.471 0.3306

UniCanvas (ours) 0.2616 0.3324

Bold value represents the best results

editing tasks encompass semantic editing for both the tar-
get subject and the background scene. Methods like SINE
are limited to edit one object within a single editing pro-
cedure, thereby requiring iterative operations encompassing
multiple editing procedures to attain the target editing. As
observed, the baselines commonly exhibit inadequate affor-
dance perception and context understanding, thereby failing
to disentangle distinct semantics in the source image and
align them with the textual editing instructions. Therefore,
these methods struggle to precisely locate the multiple edit-
ing regions and accurately perform the corresponding edits,
while also inducing undesired structural and texture changes
to the unedited regions. Besides, the blended subject suffers
from undesired alterations during semantic editing, leading
to a quality degradation of preceding subject-driven editing.
Contrarily, UniCanvas precisely identifies multiple seman-
tic regions and matches them with corresponding editing
instructions, achieving awide range of realistic andmeaning-
ful editing. Moreover, UniCanvas accomplishes semantic
editing alongside subject-driven editing in a compact pipeline
rather than a two-stage editing process, preventing fidelity
degradation of the blended subject.

5.3.4 User Study

To further evaluate the proposed method from the perspec-
tive of human perception and preferences, we conduct a user
study to gather subjective assessments of editing quality from

users.We perform paired tests comparing the proposedUni-
Canvas with subject-driven editing baselines and semantic
editing baselines, involving a total of 52 participants without
relevant backgrounds. In each comparison, users are pre-
sented with the source image Xs with annotations of the
target region, reference images of the target subject C f , the
textual prompt for semantic editing, and two correspond-
ing generations from the two compared methods (ours and
the baseline) in a random order. In comparing the quality
of subject-driven editing, users are asked to select the better
image by answering the question: “Which image achieves a
more realistic and natural integration between the blended
subject and background scene, with the subject within in
the target region closely resembling the provided reference
images?When comparing semantic editing quality, users are
asked to select the better image with the question: “Which
image better achieves the requested edit while preserving
most of the original details?” Comparison results are col-
lected for the evaluation, and the aggregated result is shown
in Table 4. As observed, our method exhibits a dominant user
preference over other methods in terms of both the quality
of subject-driven editing and semantic editing. This further
validates the effectiveness of the proposed UniCanvas in
the unified image editing task.
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Fig. 9 Visual comparisons of UniCanvas with subject-driven editing
baselines. The first column presents the source image (top) and the tar-
get subject (bottom), with the target regions indicated by red bounding
boxes. Our method demonstrates powerful affordance perception. For

instance, the domain perception in row 1, the geometric perception in
row 2, and the reflection perception in row 4, which are unattainable by
other methods (Color figure online)

5.4 More Applications

5.4.1 Subject-Driven Editing with Extended Settings

Multiple Subject-driven Editing All examples of subject-
driven editing in the experiments above involve a single
subject with one target region. UniCanvas can further
achieve multiple subject-driven edits by simultaneously gen-
eratingmultiple subjects in various designated regionswithin
a single inference process, which is challenging for existing
subject-driven methods. We present sample generations in
Fig. 11. As shown, our approach can simultaneously render
multiple target subjects in their respective regions with high
subject fidelity, while maintaining geometric and semantic
harmony with the background scene. However, we observe
that the reconstruction quality of the source image slightly
degrades as the number of subjects increases.

Subject-driven Editing with Irregular Target Regions In the
examples above, the target regions for subject-driven editing
are defined by bounding boxes. In this section, we con-
duct additional experiments on subject-driven editing using
irregular target regions derived from hand-drawn sketches.
Sample generations are present in Fig. 12. As demonstrated,
UniCanvas also support irregular, hand-drawn masks for
subject-driven editing, delivering compelling results. This
provides users with greater flexibility and choice in practical
applications.

5.4.2 Subject Replacement

Subject replacement aims to replace a specified subjectCr in
a source image Xs with a target subject Ct . UniCanvas can
accomplish subject replacement without requiring a precise
segmentation mask of the replaced subject Cr . Specifically,
UniCanvas firstly implants Ct and Xs into the model as
the foreground subject and source image. To achieve subject
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Fig. 10 Visual comparisons of UniCanvas with mask-free seman-
tic editing baselines. The first column presents the source images
(above) with the target region indicated, and the target subjects (below).
The source images (second column) for semantic editing are obtained

using UniCanvas. UniCanvas precisely identifies multiple semantic
regions and achieves a wide range of realistic and meaningful editing,
surpassing the capabilities of other methods

Fig. 11 Multiple Subject-driven Editing. Each row displays an example, with the target regions indicated by red bounding boxes. UniCanvas can
simultaneously generating multiple subjects in various designated regions with high subject fidelity (Color figure online)
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Table 4 User study Algorithm UniCanvas
Subject-driven Editing Semantic Editing

Custom Diffusion Kumari et al. (2023) 100 % -

Paint-by-Example Yang et al. (2023) 86.54 % -

ObjectStitc Song et al. (2023) 83.65 % -

SycoNet Niu et al. (2023) 79.81 % -

DreamCom Lu et al. (2023a) 72.23 % -

Anydoor Chen et al. (2024b) 75.96 % -

DiffEdit Couairon et al. (2023) - 77.88 %

Null text inversion Mokady et al. (2023) - 68.27 %

Imagic Kawar et al. (2023) - 74.04 %

SINE Zhang et al. (2023b) - 84.62 %

LEDITS++ Brack et al. (2024) - 75.96 %

InfEdit Xu et al. (2024) - 80.77 %

Bold value represents the best results
In each paired comparison, our method is preferred (≥ 50%) over the baseline methods in terms of either
subject-driven editing quality or semantic editing quality. The proposed UniCanvas demonstrates an over-
whelming user preference over other methods

Fig. 12 Subject-driven Editing with Irregular Target Regions. The
irregular target regions for editing are derived from hand-drawn
sketches, and UniCanvas delivers compelling results

replacement,we simplyneed to set the target regionof subject
Ct to approximately cover the region of Cr and perform the
regular UniCanvas inference process. As shown in Fig. 13,
the target subjectCt seamlessly replaces the specified subject
Cr in the source image Xs and maintains high visual fidelity,
generating synthesis images that are free from any undesired
feature residue or fusion artifacts. Besides, there are no strict
constraints on the categorical or shape relationship between
the object to be replaced and the target subject. For instance,
in the last row of Fig. 13, the replaced subject and the replac-
ing subject are respectively ”dinosaur plushie” and
”dog”, which exhibit significant differences in category and
appearance.

Fig. 13 Subject replacement. Each row displays an example, with
the target regions indicated by red bounding boxes. UniCanvas can
seamlessly replace any specified subject in the source image with a
customized target subject. The key identifying features of the target
subject are well preserved in the resulting images (Color figure online)

5.4.3 Spatial Controllable Customized Text-to-image
Generation

Existing customized generation methods face challenges in
controlling the spatial distribution of the target subject in the
generated images. UniCanvas can mitigate this issue. By
replacing the customized prompt PXs with a regular tex-
tual prompt as the background condition, UniCanvas can
achieve spatially controllable customized text-to-image gen-
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Fig. 14 Spatial Controllable Customized Generation. Each row
presents an example,with the reference images shown in thefirst column
and the text prompts indicated beneath the images. For each exam-
ple, we display two sample generations with different target regions,
with the target regions indicated by red bounding boxes. UniCanvas
enhances the controllability of previous customized text-to-image gen-
eration methods by generating the target concept in a specified region
with high concept and prompt fidelity. Furthermore, UniCanvas can
render the target concept into contexts where previous customized gen-
eration methods struggle (Color figure online)

eration, enabling control over the size and location of the
generated subject. We present sample generations in Fig. 14,
with the red bounding box indicating the target region of the
customized subject. As we can see, the target subject can be
seamlessly rendered into specified region with various visual
contexts, significantly enhancing the controllability over gen-
erated images. Furthermore, previous customized generation
methods struggle to render the target subject in contexts
with low co-occurrence probability Ruiz et al. (2023), where
the pre-trained model may not acquire sufficient knowledge
during the pre-training process. As exemplified in the last
row of Fig. 14, DreamBooth fails to render the customized
concept ”V* tortoise plushy” into the context ”on
Mars”. This is likely due to the pre-trained model having a
low generative prior in the context ”tortoise plushy
on Mars”. Under the dual-branch framework of UniCan-
vas, the target subjects and the specified contexts, which
have low co-occurrence probability, are individually gen-
erated and then integrated during the denoising process to
produce the final output. Therefore, UniCanvas can effec-
tively address this inherent limitation of previous customized
generation methods.

5.5 Ablation Studies

We conduct ablation studies to further evaluate the impact
of distinct components of UniCanvas, which consists of a
fine-tuning strategy and an inference-time editing process.

5.5.1 Fine-Tuning Strategy

To empower the customized model with the ability to ren-
der the target subject in the specified region with high visual
fidelity, we introduce a Region-Aware Customization (RAC)
strategy, which comprises components including Region
Variability Augmentation (RVA) and Image-Specific Prompt
(ISP). We construct three variants to gradually ablate and
validate them. 1) we eliminate the entire region-aware cus-
tomization strategy and customize the target subject using
the original text-to-image reconstruction fine-tuning, which
we donate as “w/o RAC”. 2) In the “w/o RVA” scenario, we
discard the region variability augmentation and leave the ref-
erence images unaltered. The region inside the bounding box
of the subject is treated as the foreground region, while the
outside region is regarded as the background region. 3) In the
“w/o ISP” scenario, we replace the image-specific prompt
with manually crafted templates (e.g., ”A photo of {}”),
which corresponds to the background region in Eq. (8).

The ablation results are presented in Fig. 15. In the absence
of RAC, we observed the disappearance of target objects in
the majority of examples, where the target subjects fail to
blend into source images. In a few examples without RAC,
the target subjects can be generated but exhibit a significant
deterioration in subject fidelity. Further ablation of RVA and
ISP revealed the causes of these observed phenomena. The
absence of RVA results in the generation of target subjects
with low fidelity, indicating that RVA can enhance the gener-
ation generalization of the implanted subject to local regions,
thereby improving subject fidelity. Moreover, we observe
the absence of target subjects in the majority of the “w/o
ISP” scenario, demonstrating that ISP can greatly improve
the co-occurrence probability of the implanted subject with
the source image.

5.5.2 Inference-Time Editing

During inference, UniCanvas generates the target subject
and the source image separately using two branches, which
are adaptively integrated by weighting with dynamic aggre-
gation masks in each cross-attention layer. 1) In the “w/o
dual branches” scenario, we generate images using a single
branch with the text prompt Pu = ”PXs , PC f ”. In Eq. (8),
PXs is linked to the background region,whereas PC f is asso-
ciated with the foreground region. 2) In the “w/o dynamic
mask” scenario, we verify the necessity of dynamic aggre-
gationmasks by ablating it and directly adding two branches.

123



International Journal of Computer Vision

Fig. 15 Ablation study on the fine-tuning strategy of UniCanvas.
Each row displays an example, with the target regions indicated by
red bounding boxes.We demonstrate the necessity of the Region-Aware

Customization (RAC) strategy,RegionVariabilityAugmentation (RVA)
and Image-Specific Prompt (ISP) in the “w/o RAC”, “w/o RVA”, and
“w/o ISP” scenarios, respectively (Color figure online)

Fig. 16 Ablation study on the inference-time editing of UniCanvas.
Each row showcases an example, and the target regions are marked by
red bounding boxes. We evaluate the impact of the dual branch frame-

work, dynamic aggregation mask, and deep integration in the “w/o dual
branches”, “w/o dynamic mask”, and “w/o deep integration” scenar-
ios, respectively (Color figure online)
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Fig. 17 Sensitivity of λ and tτ . The model’s performance is robust with respect to both λ and tτ . UniCanvas can function well across a large
parameter interval

3) In the “w/o deep integration” scenario, we integrate two
branches by only adding the final predicted noise of the U-
Net.

The results are presented in Fig. 16. In the “w/o dual
branches” scenario, the target subject can be successfully
generated in the specified region, while the source image
fails to be faithfully reconstructed. The variation of the
condition prompt (i.e., from the bound prompt PXs to the
prompt Pu) severely hinders the reconstruction of back-
ground image. The dynamic aggregation mask influences the
subject-driven editing quality. For complex backgrounds like
the first example in Fig. 16, the absence of aggregationmasks
results in the target subject suffering from severe fidelity
distortion and generating undesired fusion artifacts. Regard-
ing simple backgrounds like the second example in Fig. 16,
the subject exhibits residual background from the subject
branch. These results demonstrate that dynamic aggregation
masks play a key role in maintaining subject fidelity and
background preservation within the target region. Without
employing deep integration, the source image is unable to be
precisely reconstructed, indicating that successful injection
of the source image requires multi-scale integration.

5.5.3 Parameter Sensitivity

We introduce additional hyperparameters, λ and tτ in
Eq.11 and Eq.14, respectively. In this section, we per-
form sensitivity experiments to evaluate their effect on
model performance. Specifically, we vary λ over the val-
ues −5,−2,−1, 0, 1, 2 and tτ over 0, 0.2, 0.4, 0.6, 0.8, 1.0.
We present visual examples in Fig. 17. The parameter λ

controls the injection strength of the target subject. Results
indicate that the model is robust across a wide range of λ,
blending the target subject into the target region with high
fidelity while preserving the background content. However,
the model exhibits performance degradation when λ reaches

extreme values. The background content in the target region
is altered if λ is too small, while a large λ leads to the unsuc-
cessful blending of the target subject. No notable variation
is observed over a broad parameter range for small tτ . When
tτ approaches 1, the model suffers from undesired structural
and content alterations. Overall, the model’s performance is
not sensitive to either λ or tτ , and it can function well across
a large parameter interval.

5.6 More Comparisons and Discussions

In Sect. 5.3, we focus our comparisons on the most recent
semantic editing methods that are closely related to our
work. There are several other distinct lines of research in
semantic editing. A recently emerging type of editing tech-
nique is instruction-based method Brooks et al. (2023); Fu
et al. (2024); Li et al. (2024), which edits images based
on instructional prompts. These methods use direct instruc-
tions (e.g., “remove the sunglasses”) to guide the editing
process, rather than describing the desired outcome (e.g.,
“a cat in a garden”). Additionally, a classic research line
in semantic editing is GAN-based methods Karras et al.
(2019); Wang et al. (2022); Bobkov et al. (2024) that utilize
Generative Adversarial Networks (GANs) Goodfellow et al.
(2014) as their generative backbone. However, the editing
direction in GAN-based methods is typically uncontrollable,
requiring additional guidance, such as CLIP Radford et al.
(2021), to facilitate specific semantic edits based on textual
prompts Crowson et al. (2022). We present visual compar-
isons betweenUniCanvas and the abovemethods in Fig. 18.
As observed, VQGAN+CLIP demonstrates inferior perfor-
mance compared to diffusion-based models in semantic
editing, particularly in editing complex scenes and exhibiting
low control precision. ZONE may collapse in some editing
tasks that drastically alter the source image and produce sig-
nificant artifacts. Additionally, it also struggles to accurately
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Fig. 18 More Comparison. We compare UniCanvas with several
recent GAN-based methods and instruction-based editing methods.
These methods struggle to accurately locate and match multiple editing
regions with the given instructions

locate and match multiple editing regions with the given
instructions. These results further demonstrate the advan-
tages of the proposed method.

5.7 Limitations and Failure Cases

The experimental results on extensive and diverse edit-
ing examples strongly validate the effectiveness of our
method across various image editing tasks.While ourmethod
performs well in most cases, it has limitations in some chal-
lenging editing scenarios. We present several failure cases
in Fig. 19. Our method falls short in editing tasks when the
target region is extremely small, a limitation that is also
observed with other baselines. Empirical observations reveal
that the concept fidelity of the blended subject degradeswhen
the ratio of the bounding box area to the entire image area
is less than 10%. One potential solution is to magnify the
local region for editing and then scale it back to its origi-
nal size post-editing. Additionally, our method may generate
artifacts when semantic conflicts arise between the target
object and the scene within the target region of the source
image, leading to issues such as fidelity degradation and
subject omission. Furthermore, UniCanvas falls short of
state-of-the-art performance in source image reconstruction.
This could be enhanced by using more powerful generative
models such as SDXL Podell et al. (2023).

Fig. 19 Limitations and Failure Cases. UniCanvas faces challenges
when 1) the target region is too small, or 2) semantic conflicts exist
between the target object and the background scene within the target
region, causing issues such as fidelity degradation or subject omission

6 Conclusion

In this paper, we propose UniCanvas, a compact frame-
work built upon customized text-to-image generation for
affordance-aware unified image editing. UniCanvas pro-
vides an integrated interface for subject-driven editing and
semantic editing, allowing for multiple high-quality image
manipulations on a single real image simply using one
inference process. We conduct extensive experiments on
various target subject and real image pairs with differ-
ent target regions. Experimental results demonstrate that
UniCanvas exhibits strong capability in scene affordance
perception, enabling it to simultaneously achieve seamless
subject-driven editing and precise semantic editing, even
in challenging scenes such as cross-domain editing. More
applications like subject replacement and spatial controllable
customized text-to-image generation can also be achieved
under the framework of UniCanvas.

Potential Societal Impact

The approach presented in this study involves editing and
manipulating image content, which could potentially lead to
certain societal impacts. One major issue with real image
editing and manipulation is the potential misuse to cre-
ate misinformation and fake content, misleading the public
and eroding trust. Additionally, the ability of the proposed
method to learn and reproduce visual concepts may raise
concerns about copyright infringement. Altering copyrighted
images without permission could lead to legal disputes,
which may be difficult to detect and pursue. The misuse of
this editing method could also give rise to privacy and ethi-
cal concerns. On the positive side, high-quality image editing
unlocks vast opportunities in the fields of artistic creation and
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design, allowing users to explore new forms of visual expres-
sion. We hope that the potential negative societal impacts
mentioned above can be offset by the new creative possibil-
ities offered by these image editing methods.
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